Category: Uncategorized

 

陶瓷刀片在模具硬铣削加工中的应用

陶瓷刀片在模具硬铣削加工中的应用 为了在当今全球经济中保持竞争优势,模具制造商必须在极短的时间周期内不断生产出高质量的产品。为了达到这一目标,必须开发先进的制造工艺技术和切削刀具材料,使模具加工车间能始终处于竞争的优势地位。硬铣削作为这些先进制造技术中的一项,一直在不断发展之中。前几年,由于受到当时机床和切削刀具的局限,模具制造商未能真正采用硬铣削工艺。然而在今天,大多数配备有高刚性、高转速主轴系统和先进处理器的现代加工中心对切削硬材料都得心应手。同时,先进的CAM软件包已有针对硬铣削的特定加工循环,设计了可使刀具寿命最优化的刀具轨迹(刀路)功能。 硬铣削刀具的选择   模具车间通常使用三种类型的铣削刀具:整体硬质合金立铣刀、可转位硬质合金刀片以及最新开发的可转位陶瓷刀片。在不同的加工应用中,这三种刀具各有其优势和缺点。   (1)整体硬质合金立铣刀通常需要经过精密磨削和涂层处理,其价格相当昂贵。当刀具变钝时,必须进行重磨和再涂层。但是,经过重新修复的立铣刀其切削性能往往不如新刀好。   (2)第二类硬铣削刀具安装有可转位硬质合金刀片。在大多数情况下,此类刀片的硬质合金牌号及刀片几何参数并不是专为硬铣削加工而设计的,因此在加工淬硬材料时不能提供最佳的刀具寿命和生产效率。   (3)第三类硬铣削刀具采用了可转位陶瓷刀片,尤其是晶须增强型陶瓷刀片。使用装有可转位陶瓷刀片的刀具系统能够带来诸多好处,包括缩短加工周期和减少每个工件的加工工序。但是,使用这种刀具系统要求编程员和操作者都必须重新考虑加工工艺,并应重视一些使用其它刀具时可能无须考虑的细节问题。   模具加工车间使用全套装有晶须增强陶瓷刀片的硬铣削刀具系列(包括铣削表面、型腔和轮廓的可转位刀片),就能将淬硬的毛坯粗加工成一个零件并在一次安装中完成精加工。采用陶瓷刀片的铣刀(从大型面铣刀到小直径立铣刀都采用可转位陶瓷刀片)能够实现安全的高速铣削。使用为硬铣削设计的陶瓷刀片铣刀进行高速切削时,确保刀片夹持的安全性非常重要。   高速铣刀是基于陶瓷刀片铣削速度下的安全性和再现性来开发的。目前所用的晶须增强陶瓷的熔点超过2000℃,这就意味着陶瓷刀片能够以远远高于硬质合金刀片失效点的切削速度进行加工。实际上,晶须增强陶瓷刀片能在高于硬质合金刀片熔点的温度下正常工作。用陶瓷刀片进行硬铣削加工时不推荐使用冷却液,但建议使用空气冷却法,尤其在型腔铣削中,以避免切屑的二次切削。减少冷却液的使用及废液处理费用也是在硬铣削时使用陶瓷刀片可获得的额外好处。 使用陶瓷刀片降低加工成本   使用陶瓷刀片硬铣削能以多种途径帮助模具加工车间降低生产成本。首先,可以用一道工序替代多道工序。使用陶瓷刀片硬铣削时,可以先对钢件淬火,然后在淬硬状态下对工件进行铣削加工,从而取代过去加工→淬火→再加工的三道工序。通过减少在不同加工阶段安装和搬运工件的时间,可以缩短加工周期和改进作业路径。此外,用陶瓷刀片粗铣淬硬工件还能避免昂贵而费时的EDM(电火花机床)加工,无需制作一个或多个电极。 ( 文章来源:互联网 )

陶瓷刀具材料的性能与应用

一、绪论 5、有较低的磨擦系数:由于陶瓷刀具的磨擦系数小,故切削变形、切削力均比硬质合金小,例如用LT55和SG4陶瓷刀具加工淬火后45号钢(HRC50―55)时,与YTO5比较:Fc下降17.6%,Fp下降14%,Ff下降28%。陶瓷刀具在切削时的磨擦系数低,切屑不易粘在刀具上,不易产生积屑瘤,故已加工表面的粗糙度低,一般切削钢时Ra可达Ra0.8―0.4μm;切铸铁时可达Ra1.6―0.8μm。

陶瓷成型方法分类有哪些?

问:陶瓷成型方法分类有哪些? 答:陶瓷成型方法总共分为四大类: 1.压力成型法:干压成型法,热压成型法,等静压成型法,前两者适用钢模,坯料含水量6%-8%,后者适用于橡胶模,坯料含水量1.5%-3%; 2.可塑成型法:挤压成型法,注射成型法,轧膜成型法;前者适用于有模成型,后者适用于无模,两者坯料含水量18%-26%之间; 3.浆料成型法:注浆成型法,注凝成型法,流延成型法,离心注浆成型,其中注浆成型法又包括(热法与冷法),热法(热压铸法)适用于用于钢模,冷法的适用于常压冷法注浆,加压冷法注浆,抽真空冷法注浆,多用于石膏模,坯料含水量30%-40%, 4.先进成型法:压滤成型法,直接凝固注模成型,电泳沉积成型法,离心沉积成型法,固体无模成型法。 综上,粉末坯体的成型方法较多,但是总体上其成型方法可以分为以上几种,在种类繁多的陶瓷成型方法中,我们如何来选择合适于生产的成型方法变得尤为重要

氧化铈抛光粉的生产及其应用和选择

发展历史 随着稀土工业的发展,于二十世纪 30 年代,首先在欧洲出现了用稀土氧化物作抛光粉来抛光玻璃。在第二次世界大战中,稀土抛光粉很快在抛光精密光学仪器方面获得成功。由于稀土抛光粉具有抛光效率高、质量好、污染小等优点,激发了西方国家的研究热情。这样,稀土抛光粉就以取代传统抛光粉的趋势迅速发展起来。 国外于 60 年前开始生产稀土抛光粉,二十世纪 90 年代已形成各种标准化、系列化的产品达30多种。 目前,国外的稀土抛光粉生产厂家主要有15家(年生产能力为 200 吨以上者。其中,法国罗地亚公司年生产能力为 2200 多吨,是目前世界上最大的稀土抛光粉生产厂家。美国的抛光粉年产量达1500 吨以上。日本生产稀土抛光粉的原料采用氟碳铈矿、粗氯化铈和氯化稀土三种,工艺上各不相同。日本稀土抛光粉的生产在烧结设备和技术上均具特色。1968 年,我国在上海跃龙化工厂首次研制成功稀土抛光粉。 成分结构 氧化铈抛光粉是指由氧化铈组份所组成的抛光粉,氧化铈抛光粉主要成份为二氧化铈(CeO2),其次分别为氧化镧(La2O3)、氧化镨(Pr2O3),此外还含有微量的氧化硅、氧化铝和氧化钙, 另外有些型号的抛光粉为了提供抛光性能加入3-7%氟。 抛光粉晶型结构 在电子显微镜下氧化铈抛光粉的晶型结构 氧化铈抛光粉的使用 1、除了氧化铈抛光粉,其他抛光粉的材料:抛光粉通常由氧化铈、氧化铝、氧化硅、氧化铁、氧化锆、氧化铬等组份组成,不同的材料的硬度不同,在水中的化学性质也不同,因此使用场合各不相同。氧化铝和氧化铬的莫氏硬度为9,氧化铈和氧化锆为7,氧化铁更低。氧化铈与硅酸盐玻璃的化学活性较高,硬度也相当,因此广泛用于玻璃的抛光。 2、氧化铈的颗粒度:粒度越大的氧化铈,磨削力越大,越适合于较硬的材料,ZF玻璃应该用偏细的抛光粉。要注意的是,所有的氧化铈的颗粒度都有一个分布问题,平均粒径或中位径D50的大小只决定了抛光速度的快慢,而最大粒径Dmax决定了抛光精度的高低。因此,要得到高精度要求,必须控制抛光粉的最大颗粒。 3、抛光粉的硬度:抛光粉的真实硬度与材料有关,如氧化铈的硬度就是莫氏硬度7左右,各种氧化铈都差不多。但不同的氧化铈体给人感觉硬度不同,是因为氧化铈抛光粉通常为团聚体,附图为一个抛光粉团聚体的电镜照片。由于烧成温度不同,团聚体的强度也不一样,因此使用时会有硬度不一样的感觉。当然,有的抛光粉中加入氧化铝等较硬的材料,表现出来的磨削率和耐磨性都会提高。 4、抛光浆料的浓度:抛光过程中浆料的浓度决定了抛光速度,浓度越大抛光速度越高。使用小颗粒抛光粉时,浆料浓度因适当调低。 5、氧化铈抛光粉的抛光模的选择:抛光模应该用软一点的。应该指出的是,很多聚氨酯抛光片中添加了氧化铈抛光粉。这些抛光粉的最大颗粒度同样决定了最终的抛光精度。依我之间,最好使用不加抛光粉的抛光模。 影响氧化铈抛光粉性能的指标 1、粉体的粒度大小:决定了抛光精度和速度,常用多少目和粉体的平均粒度大小来。过筛的筛网目数能掌握粉体相对的粒度的值,平均粒度决定了抛光粉颗粒大小的整体水平。 2、粉体莫氏硬度:硬度相对大的粉体具有较快的切削效果,同时添加一些助磨剂等等也同样能提高切削效果;不同的应用领域会有很大出入,包括自身加工工艺。 3、粉体悬浮性:好的粉要求抛光粉要有较好的悬浮性,粉体的形状和粒度大小对悬浮性能具有一定的影响,片形及粒度细些的抛光粉的悬浮性相对的要好一些,但不是决对的。抛光粉悬浮性能的提高也可通过加悬浮液(剂)来改善。 4、粉体的晶型:粉体的晶型是团聚在一起的单晶颗粒,决定了粉体的切削性、耐磨性及流动性。粉体团聚在一起的单晶颗粒在抛光过程中分离(破碎),使其切削性、耐磨性逐渐下降,不规则的六边形晶型颗粒具有良好的切削性、耐磨性和流动性。 5、外观颜色:原料中Pr的含量及灼烧温度等因素有关,镨含量越高,其粉体显棕红色。低铈抛光粉中含有大量的镨(铈镨料),使其显棕红色。高铈抛光粉,灼烧温度越高,其显偏白粉色,温度低(900度左右),其显淡黄色。 综上所述,天天彩票的网址为了增加氧化铈抛光粉的抛光速度,通常在氧化铈抛光粉加入氟以增加磨削率。铈含量较低的混合稀土抛光粉通常掺有3-8的氟;纯氧化铈抛光粉通常不掺氟。对ZF或F系列的玻璃来说,因为本身硬度较小,而且材料本身的氟含量较高,因此因选用不含氟的抛光粉为好。 生产原料 目前,我国生产铈系稀土抛光粉的原料有下列几种:(1) 氧化铈 (CeO2) ,由混合稀土盐类经分离后所得 (w(CeO2)=99%);(2) 混合稀土氢氧化物 (RE(OH)3) ,天天彩票的网址为稀土精矿 (w(REO)≥50%) 化学处理后的中间原料 (w(REO)=65% ,w(CeO2)≥48%);(3) 混合氯化稀土(RECl3) ,从混合氯化稀土中萃取分离得到的少铕氯化稀土(主要含La ,CeRead More

蓝宝石抛光用氧化铝抛光液

在蓝宝石的抛光工艺中, 常用的磨料主要包括金刚石、二氧化硅溶胶、氧化铈和氧化铝等磨料。 实验数据表明,a-氧化铝抛光粉(0.3um,球型)在蓝宝石抛光过程中的优势明显,效果最好。 其一:抛光粉硬度比较: 1) 金刚石只用于传统的机械抛光,其硬度(莫氏10)比蓝宝石(莫氏 9)硬度高,容易产生划伤,蓝宝石表面损伤度高,良率低。 2)氧化铝的硬度与蓝宝石相当,颗粒球型,抛光速率高,不易起划伤,良率高,是比较理想的抛光材料。 3)SiO2硬度(莫氏硬度7.5)比蓝宝石低,抛光速率比氧化铝抛光粉慢很多,抛光比较耗时。 其二:抛光效果比较: 在抛光C-平面蓝宝石衬底时,a-氧化铝抛光粉(0.3um)制成的研磨液的抛光性能(去除速率和表面质量等)优于其他磨料, 具体表现如下: 1)形成的水化层增加,抛光过程中,在蓝宝石基底上持续形成水化层,它比基底层软,该层的形成有利于材料的去除,并产生高质量表面。 2)表面质量改善,a-氧化铝与基底蓝宝石的硬度一样,因此,磨料划伤蓝宝石的可能性很小。 3)去除速率增加,a-氧化铝磨料经历了与基底蓝宝石一样的表面水化,在基底宝石与磨料水化层之间的化学机械作用加速了材料去除,当磨料和基底蓝宝石的表面在抛光压力下靠在一起并剪切时,就相互粘附,进一步的剪切就会使粒子撕开键合的水化层,通过粒子的前边沿促进材料去除。表面粗糙度能小于0.2nm. 4)氧化铝抛光液在循环过程中稳定性更好,二氧化硅抛光液在使用过程中温度必须严格控制,以防止结块,但氧化铝研磨液就比较稳定,也显示了很好的洁净度。 实验1:采用氧化铝抛光粉对蓝宝石衬底进行抛光,抛光液的pH为10时抛光效果最好,表面粗糙度RMS可达0.2nm。抛光压力在0. 12Mpa 至0. 15Mpa ,抛光液浓度为10%时较佳。浓度越高,抛光速率越快。 目前很多领先的蓝宝石加工厂正在评估并使用基于氧化铝研磨液用于更大直径晶圆抛光。 来源:宣城晶瑞新材料有限公司

德特材料参加2017年泰国曼谷国际制造博览会(Manufacturing Expo 2017)

德特材料参加2017年泰国曼谷国际制造博览会(Manufacturing Expo 2017) 2017年6月21-24,参加2017年泰国曼谷国际制造博览会(Manufacturing Expo 2017, Bangkok)。在此次博览会上,我司展出了最新研制的金刚石,氧化铝,二氧化硅,碳化硼研磨抛光液。

粉体颗粒在液相中的分散过程浅析

分散的实质就是使颗粒在一定环境下分离散开的过程。 1.在超细粉体的制备过程中,“粉碎与反粉碎”过程实际就是粉碎过程中新生粒子的分散和团聚问题,它对最终产品的细度起到至关重要的作用; 2.在粉体制备行业,粉体分散性的好坏直接影响着分级效果和分级产品的细度及均匀性;另外,分散性对粉体的输送、混合、均化和包装的作用也不容忽视; 3.在化工领域,如涂料、染料、油墨、化妆品等,分散及分散稳定性直接影响着产品的质量和性能; 4.在材料科学领域,某种元素(物质)在材料机体中的分散程度决定了材料的性能和质量。研究表明,材料的损坏断裂和腐蚀等主要是发生在材料的不均匀处及缺陷处。组成材料的不同组分的分散程度越高,材料的性能越好。

超精密研磨抛光方法

摘  要:介绍了几种近代超精密研磨抛光方法的加工原理、特点、加工对象和应用。 关键词:超精密研磨;弹性发射加工;机械化学研磨;磁力研磨;超声研磨 Abstract:Introduces several methods of modern ultra-precision polishing processing principle, characteristics, objects and application. Key words:Ultra-precision grinding, Elastic emission machining, Chemical mechanical polishing, Magnetic abrasive, Ultrasonic grinding. 一 、概述 超精密加工技术标志着一个国家机械制造业的水平,在提高光机电产品的性能、 质量、寿命和研发高科技产品等方面具有十分重要的作用。当前,超精密加工是指加 工误差小于 0.01mm、表面粗糙度小于 Ra0.025mm 的加工,又称之为亚微米级加工。现在,超精密加工已进入纳米级,称之为纳米加工。 在超精密加工中,超精密切削、超精密磨削的实现在很大程度上依赖于加工设备、 加工工具以及其它相关技术的支持。并受其加工原理及环境因素的影响和限制,要实 现更高精度的加工十分困难。而超精密研磨抛光由于具有独特的加工原理和对加工设 备、环境因素要求不高等特点,故它可以实现纳米级甚至原子级的加工,已成为超精密加工技术中的一个重要部分。

常用抛光方法

目前常用的抛光方法有以下几种: 1.1 机械抛光 机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量 要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用这种方法。 1.2 化学抛光 化学抛光是让材料在化学介质中表面微观凸出的部分较凹部分优先溶解,从而得到平滑面。这种方法的主要优点是不需复杂设备,可以抛光形状复杂的工件,可以同时抛光很多工件,效率高。化学抛光的核心问题是抛光液的配制。化学抛光得到的表面粗糙度一般为数10μm。

二氧化硅抛光液

        二氧化硅抛光液采用“一步合成法”制备。二氧化硅抛光液的抛光胶粒致密、均匀、成球形,具有抛光效率高、粒度分布均匀、杂质含量低等特点,广泛应用于光纤器件、硅片、光学玻璃、晶体、蓝宝石、模具等各种精密器件的最后抛光。粒度、浓度、pH值可根据客户需要进行设计。